

Utilizing Subsurface Drip Irrigation

in Central US: Lessons Learned

Saleh Taghvaeian

Dec. 20, 2021

Outline

- Drip irrigation in central US
- Two examples from Oklahoma
- Salinity in SDI systems: ideas and suggestions
- Root intrusion in SDI systems: ideas and suggestions

% Farms Using Drip/Micro

Greatest Barriers to SDI Adoption in central US

- System cost
- Germination and crop establishment
- Prevention of animal and insect damage to driplines

Example 1: Oklahoma Panhandle

Distance from drip lines

Results from Oklahoma Panhandle

- Corn and Sorghum yields were not influenced by offset treatments
- Decreasing irrigation amount resulted in yield loss

Example 2: Central Oklahoma

- Farm effluent collected at lagoons
- Pumped to SDI for hay production

- 5/8-inch diameter, 15-mil DripNet PC
- Tapes 16 inches (40 cm) deep, 30 inches (76 cm) spacing
- 0.26 gph emitters, 24 inches (60 cm) spacing

- Zone 4:
 - $q_{avg} = 0.27 \text{ gph; UC} = 91\%; DU = 83\%$
- Zone 7:
 - $q_{avg} = 0.28 \text{ gph; UC} = 96\%; DU = 93\%$

Salinity

Source: Wang, Z., Fan, B., & Guo, L. (2019). Soil salinization after long-term mulched drip irrigation poses a potential risk to agricultural sustainability. European journal of soil science, 70(1), 20-24.

- 1. A review of previous studies found mixed results under saline conditions. Sometimes SDI performed better than sprinkler and furrow, sometimes worse.
- 2. In cases when SDI resulted in reduced salt impact compared to furrow, it was because less water was applied and water was pushed away from the root zone.
- 3. Salty fields can be irrigated during rains to further protect plants after emergence.
- 4. Machines that would remove the salty soil from the surface and plant down just a little bit could help (listing).
- 5. The placement of drip lines relative to crop row is important.

- 6. Irrigation scheduling plays a major role. Not enough water prevents leaching from happening, too much water can cause more issues, especially under shallow groundwater conditions (or hard pans).
- 7. Leaching (reclamation & maintenance) can be used effectively to reduce salinity if appropriate water resources are available.
- 8. System design and maintenance are also critical. Proper maintenance (flushing, chlorination, and acid injection) can guarantee system performance.
- 9. History of each field, previous irrigation system should be considered. New drip next to old drip.
- 10. Salt tolerant varieties should be developed locally as a viable strategy.

11. Soil texture and health impact the effectiveness of leaching and many other practices implemented, as well as general crop health.

A: 12 inches of applied water, B: 19 inches of applied water

Hanson, B., & May, D. (2011). Drip irrigation salinity management for row crops. UCANR Publications.

Root Intrusion

Source: Guo, S. (2019). Subsurface Drip Lateral Line Depths to Protect against Root Intrusion. Water, 11(11), 2285.

Industry solutions

A few molecules of patented chemicals are constantly released

Industry solutions

Copper oxide (environmentally friendly)

Industry solutions

Physical barrier and copper oxide infusion

- 1. In general, this issue is more challenging under limited water conditions
- Keeping the soil around the emitter at high moisture levels can help.
- 3. With the same amount of water, increasing irrigation frequency (shorter interval) is suggested.
- 4. Lowering pH by injecting acid discourages root growth.
- 5. High dose of chlorine (100 to 400 ppm) can destroy roots in the drippers.
- 6. Injecting herbicides (metam sodium or trifluralin) kills roots too.
- 7. Seamless dripline may perform better if roots grow along the seam and into the dripper.

Saleh.Taghvaeian@okstate.edu

